Google Search

For weather information from across the nation, please check out our home site National Weather Outlook. Thanks!

Washington DC Current Conditions

Washington DC Weather Forecast

Washington DC 7 Day Weather Forecast

Washington DC Metro Weather Radar

Showing posts with label mission. Show all posts
Showing posts with label mission. Show all posts

Monday, February 9, 2015

NASA's Fermi Mission brings deeper focus to thunderstorm gamma rays

Each day, thunderstorms around the world produce about a thousand quick bursts of gamma rays, some of the highest-energy light naturally found on Earth. By merging records of events seen by NASA's Fermi Gamma-ray Space Telescope with data from ground-based radar and lightning detectors, scientists have completed the most detailed analysis to date of the types of thunderstorms involved.

"Remarkably, we have found that any thunderstorm can produce gamma rays, even those that appear to be so weak a meteorologist wouldn't look twice at them," said Themis Chronis, who led the research at the University of Alabama in Huntsville (UAH).

The outbursts, called terrestrial gamma-ray flashes (TGFs), were discovered in 1992 by NASA's Compton Gamma-Ray Observatory, which operated until 2000. TGFs occur unpredictably and fleetingly, with durations less than a thousandth of a second, and remain poorly understood.

In late 2012, Fermi scientists employed new techniques that effectively upgraded the satellite's Gamma-ray Burst Monitor (GBM), making it 10 times more sensitive to TGFs and allowing it to record weak events that were overlooked before.

"As a result of our enhanced discovery rate, we were able to show that most TGFs also generate strong bursts of radio waves like those produced by lightning," said Michael Briggs, assistant director of the Center for Space Plasma and Aeronomic Research at UAH and a member of the GBM team.

Previously, TGF positions could be roughly estimated based on Fermi's location at the time of the event. The GBM can detect flashes within about 500 miles (800 kilometers), but this is too imprecise to definitively associate a TGF with a specific storm.

Ground-based lightning networks use radio data to pin down strike locations. The discovery of similar signals from TGFs meant that scientists could use the networks to determine which storms produce gamma-ray flashes, opening the door to a deeper understanding of the meteorology powering these extreme events.

Chronis, Briggs and their colleagues sifted through 2,279 TGFs detected by Fermi's GBM to derive a sample of nearly 900 events accurately located by the Total Lightning Network operated by Earth Networks in Germantown, Maryland, and the World Wide Lightning Location Network, a research collaboration run by the University of Washington in Seattle. These systems can pinpoint the location of lightning discharges -- and the corresponding signals from TGFs -- to within 6 miles (10 km) anywhere on the globe.

From this group, the team identified 24 TGFs that occurred within areas covered by Next Generation Weather Radar (NEXRAD) sites in Florida, Louisiana, Texas, Puerto Rico and Guam. For eight of these storms, the researchers obtained additional information about atmospheric conditions through sensor data collected by the Department of Atmospheric Science at the University of Wyoming in Laramie.

"All told, this study is our best look yet at TGF-producing storms, and it shows convincingly that storm intensity is not the key," said Chronis, who will present the findings Wed., Dec. 17, in an invited talk at the American Geophysical Union meeting in San Francisco. A paper describing the research has been submitted to the Bulletin of the American Meteorological Society.

Scientists suspect that TGFs arise from strong electric fields near the tops of thunderstorms. Updrafts and downdrafts within the storms force rain, snow and ice to collide and acquire electrical charge. Usually, positive charge accumulates in the upper part of the storm and negative charge accumulates below. When the storm's electrical field becomes so strong it breaks down the insulating properties of air, a lightning discharge occurs.

Under the right conditions, the upper part of an intracloud lightning bolt disrupts the storm's electric field in such a way that an avalanche of electrons surges upward at high speed. When these fast-moving electrons are deflected by air molecules, they emit gamma rays and create a TGF.

About 75 percent of lightning stays within the storm, and about 2,000 of these intracloud discharges occur for each TGF Fermi detects.

The new study confirms previous findings indicating that TGFs tend to occur near the highest parts of a thunderstorm, between about 7 and 9 miles (11 to 14 kilometers) high. "We suspect this isn't the full story," explained Briggs. "Lightning often occurs at lower altitudes and TGFs probably do too, but traveling the greater depth of air weakens the gamma rays so much the GBM can't detect them."

Based on current Fermi statistics, scientists estimate that some 1,100 TGFs occur each day, but the number may be much higher if low-altitude flashes are being missed.

While it is too early to draw conclusions, Chronis notes, there are a few hints that gamma-ray flashes may prefer storm areas where updrafts have weakened and the aging storm has become less organized. "Part of our ongoing research is to track these storms with NEXRAD radar to determine if we can relate TGFs to the thunderstorm life cycle," he said.

Video: https://www.youtube.com/watch?v=JgK4Ds_Sj6Q#t=66


View the original article here

Wednesday, February 12, 2014

'Standing on the comet': Rosetta mission will lead to space weather research

A comet-bound spacecraft which has been in sleep mode in excess of 2 yrs is scheduled to wake on the morning of Jan. 20 -- beginning the house stretch of their decade-lengthy journey to some mile-wide ball of rock, dust and ice.

If all goes as planned, Rosetta -- a ecu Space Agency-brought mission which involves College of Michigan engineers and researchers -- would be the first craft to really find a comet in addition to track it to have an extended time period.

The Philae lander will latch onto the main of comet 67P/Churyumov-Gerasimenko in November and also the orbiter will operate before the finish of 2015. No mission has ever attempted this kind of in-depth take a look at one of these simple artefacts from the earliest times of our photo voltaic system.

Engineers at U-M's Space Physics Research Lab built electronic components to have an onboard instrument that's thought is the most sensitive available ever flown wide. Along with a team of scientists will engage in the mission science too.

While the majority of the large questions Rosetta aims to reply to cope with the foundation and evolution from the photo voltaic system, U-M researchers can make a distinctive contribution that may provide very practical experience into the way the sun and planets interface today.

They'll evaluate dimensions taken in the comet to review photo voltaic wind interactions that can result in photo voltaic storms. The photo voltaic wind is really a stream of billed contaminants coming in the sun. Photo voltaic storms are bursts of activity that may threaten astronauts and damage Earth's satellites and electric power grid.

"The way the photo voltaic wind works is among the greatest outstanding questions regarding the photo voltaic system today. By studying the way it interacts with cometary gases, we are able to become familiar with a lot concerning the composition from the photo voltaic wind," stated Tamas Gombosi, the Rollin M. Gerstacker Professor of Engineering within the Department of Atmospheric, Oceanic and Space Sciences.

Gombosi and the research group are leaders within the area of space weather. One they developed was lately adopted through the national Space Weather Conjecture Center.

In the sun's equator, the wind travels rather gradually, Gombosi stated. It moves faster at high latitudes. Interactions backward and forward types can result in magnetospheric storms. Earth orbits close to the equator, therefore it is difficult to read the fast wind from your standpoint.

"But comets go through everything. Using their help, we are able to read the fast photo voltaic wind," Gombosi stated.

Gombosi along with other U-M scientists will engage in additional Rosetta goals. They'll study and simulate how rapidly the comet outgases material from the nucleus to the tail because it rings round the sun. They'll engage in analyzing what elements have been in the comet's tail, atmosphere and ionosphere, in addition to how quickly the electrified contaminants within the ionosphere are traveling.

Michael Combination, the Freeman Devold Burns Collegiate Research Professor within the Department of Atmospheric, Oceanic and Space Sciences, is really a co-investigator on several instruments. He'll consider the speed where the comet's core is sublimating, or turning from the solid right into a gas, and he'll work on the team that's examining individuals gases. They'll explore the amount of deadly carbon monoxide and co2, for instance. They cannot identify co2 from Earth.

"It's tough to observe a few of the chemical species when they are far and faint. Co2 is most likely the 2nd most abundant species for the most part comets, but it is not been noticed in the 1000's we have checked out from Earth," stated Combination, that has analyzed comets in excess of 3 decades.

Comets -- small rock and ice physiques -- were contained in the nebula that created the photo voltaic system and also have been revolving about since in far, cold devices either just beyond the orbit of Neptune or perhaps a quarter from the distance towards the nearest star. For researchers, they are ancient items which help them know how the photo voltaic system created and developed. They are thought to possess shipped Earth's oceans and possibly the seed products of existence in organic materials.

"People make use of the example it's experienced the freezer within the last 4.5 million many introduced set for convenient study. So we are searching around we are able to at how a way the photo voltaic system was 4.5 billion years back,Inch Combination stated.

Comet 67P/Churyumov-Gerasimenko is among the littlest physiques humans have ever attempted to find. Its gravity is all about 1,000 occasions under those of Earth.

"Around the lander, there is a camera that may look straight lower like you are standing and searching in the ground. Plus there is a breathtaking camera that may watch out and find out an image from the horizon. It will be fun to determine what this landscape appears like,Inch Combination stated. "It will be like sitting on a comet."


View the original article here